INTEGRATION BY PARTS (TABLE METHQOD)

Suppose you want to evaluate J-X2 c0s 3x dx using integration by parts.

Using the ju dv notation, we get

u=X dv = cos3x dx

du = 2x dx v :%sinsx

So, szcos3x dx = x? lsin3x —J.2x 1sin3x dx  or NG 1sin3x —ngsinBX dx
3 3 3 3

We see that it is necessary to perform integration by parts a 2™ time.
If we do that without multiplying together and simplifying or factoring out any constants, we get

dv :%sin 3x dx

du =2 dx V=—%COS3X

So, IXZCOS3X dx = x? 1sin3x —| 2x —ECOS3X —IZ —1c053x dx
3 9 9

At this point, the remaining integral is simple enough to finish without integration by parts (*).
But suppose we perform integration by parts a 3" time, again without changing the constants, then we get

dv = —écos:%x dx
1.

du =0 dx VvV =——5in3x
27

So, sz cos3x dx = xz(lsin 3x] - 2x(—1c033xj— 2(—isin 3x] —J.O[—isin 3x} dx
3 9 27 27

Since the integrand in the final integral is now O, its anti-derivative is simply a constant (C ).
We can let C =0 for now, and add a constant of integration later.

So, Ixzcos3x dx = x> 1sin3x —| 2x —lcos?,x -2 —isin3x +C
3 9 27
) o1 . 1 1 .
jx cos3x dx = x| =sin3x |—2x| —=c0s3x |+ 2| ——sin3x |+C
3 9 27
2 1 2 - 2 2 .
Ix €cosS3X dX = =X“Sin3X+—=XCc0s3Xx ——sin3x+C
3 9 27
Ixz cos3x dx = %((9x2 —2)sin3x+6xc0s3x) +C

(*) If we had skipped the final “unnecessary” integration by parts, we would have done these last 3 lines anyway.

Now, in the traditional method,
you would probably want to simplify and factor all the constants before each new integration by parts,
and skip the last integration by parts.

However, by not doing so,
we can actually perform the entire multi-step integration by parts inside a single table.



To understand how the table method of integration by parts works,
. . . 1.
first notice that we didn’t really change du = 2x dX and v = =sin 3X
from the result of the 1% integration by parts,
1.
and just reused them as U = 2X and dv = §S|n 3x dx

for the 2" integration by parts.

That means that we could “eliminate” writing that repeated line.

1
This also applies to du =2 dx and v = —§C083X
from the 2" integration by parts
1
being reused as U =2 and dv = —§COS 3x dx

for the 3" integration by parts. And so on.

So the entire integration by parts could have been compressed into the following table.

CR
. cosdy
+
1.
2r —szindx
3
1
2 ——cos3r
0
+
—isitﬁx
27

The downward diagonal products (one row in the U column x the next row in the dv column)
are the results of the UV portion of the integration by parts formula.

However, because of the negative in the — J. v du part of the formula,

which distributes through each successive integration by parts,
the products must be alternately added and subtracted.

In other words, to read the antiderivative from the table above:
1. 1 1 . 1 .
Ixz cos3x dx = x°| =sin3x | - 2x| —=cos3x | + 2| ——sin3x |+ C = —((9x* — 2)sin 3x + 6xc0s3x) + C
3 9 27 27
The same result with much less writing.

Notice that the fourth row of the U column (0) is ignored.
We could have viewed it as a factor of the integrand in the 4™ integration by parts,

which means its antiderivative would have been O (or C).
Or we could have viewed it as a factor of the next downward diagonal product,

which also means its corresponding antiderivative would have been O .
In either case, it contributes nothing to the antiderivative.

However, because of that O inthe U column,
all following derivatives in the U column would also have been O .
So we can stop taking any more derivatives or antiderivatives.

In fact, the O inthe U column tells us to stop filling out the table,
and start collecting the answer.



The organizational structure makes it a much faster and less error-prone method which requires a lot less writing.
It also makes it easier to find mistakes later on.

This method can be used for antiderivatives of the types

I(a” X" +a, X"+ +ax+ay)e” dx where N is a positive integer, and K is a constant
j(an X" +a, X"t +...+aX+a,)sinkx dx where N is a positive integer, and K is a constant
j(an X" +a, X" +...+a,X+a,)coskx dx where N is a positive integer, and K is a constant
I(a” X" +a, X" +...+a,x+a,)sinh kx dx where N is a positive integer, and K is a constant
I(an X" +a,, X"t +...+a,Xx+a,)cosh kx dx where N is a positive integer, and K is a constant
.[(a” X" +a, X"+ +ax+a,)(mx+b)* dx where N is a positive integer, and M and b are constants,

and K is a constant such that K = —1 (and never becomes —1
during the repeated antidifferentiations)

If you put the polynomial factor into the U column,
then by repeatedly differentiating it,

you eventually get O inthe U column.
In the meantime, the dv column can be antidifferentiated repeatedly using basic techniques.




The method cannot be used directly for antiderivatives of the types

Ieax sin kx dx where a and K are constants

jeax coskx dx where @ and K are constants
but it can be used for part of the integration.

Consider J’e2x cos3x dx.

u g
oz 3 g’
+

) 1,

— 3sin 3x —a
2

+ 1,

—Qcos3x —a°
4

After differentiating/antidifferentiating twice,

it becomes clear we will never get O inthe U column.

However, we have arrived at a row

that is essentially the same as the original row (except for constant factors).

That is enough, because remembering that the product across the 3" row is an integrand, we get

Iezx cos3x dx = (cossx)(%ezxj —~ (-3sin 3x)(%e2x] + I(—Q cosBx)(%esz dx
2x 1 2X 3 2X = 9 2x
je cos3x dx ==e“* cos3x+—e sm3x——je cos3x dx
2 4 4
The original integral appears on both sides of the equation, so we can isolate it.
jezx cos 3x dx +gje2X cos3x dx = le2X C0S 3x +§e2X sin 3x
4 2 4
E'[e“ cos3x dx = 1e2X c0s 3x +§e2X sin 3x
4 2 4
fezx cos3x dx = i(iezx oS 3X +§e2X sin 3x)
13\ 2 4
2x 2 2% 3 2% -
je cos3x dx = —e“* cos3x+—e“*sin3x+C
13 13
je“ cos3x dx = %ezx(2c033x+3sin 3x)+C

This technique works whenever repeated integrations by parts
results in integrands which are constant multiples of the original integral,
which includes antiderivatives of the types

(where Kk and m are non-zero constants and (*) where K = m)

Isin kx sin mx dx (*) Isin kx cos mx dx Icoskx cosmx dx ()

jsin kx sinh mx dx jsin kx cosh mx dx Icos kx sinh mx dx Icos kx cosh mx dx



The technique also works for antiderivatives of the types
(where Kk and m are non-zero constants and (*) where K = m)

Ieax sinh kx dx feax cosh kx dx

jsinh kx sinh mx dx (*) jsinh kx cosh mx dx jcosh kx cosh mx dx (*)

However, these could all be done much more easily

by replacing the hyperbolic functions with their exponential definitions,
simplifying the integrand,

and then antidifferentiating without integration by parts.

By the way, the original integral could also have been done by reversing the initial choice of U and dv .

u a
g’ cosdxy
+
\ 1.
2’ —szindx
3
4g7" mm ——cos3r

Iezx cos3x dx = ezx(%sin 3xj - Zezx(—%cos3x) i I4e2x(—%cos3x) dx

Iezx cos3x dx = 1e2X sin 3x +Ee2X cosSx—EJ'e2X cos3x dx
3 9 9

jezx cos3x dx +£J'e2X cos3x dx = 1e2X sin 3x+ge2X c0S3X
9 3 9

EJ'ezx cos3x dx = 1e2X sin 3x+ge2X c0s3X

9 3 9

jezx cos3x dx = g(lezx sin 3x +Ee2X cos3xj
13(3 9

Iezx cos3x dx = ie2X sin 3x+£e2X cos3x+C
13 1

Iezx cos3x dx = %ezx(%in 3x+2c0s3x) +C

The result and amount of work is the same as the original choice.
However, mistakes are more common when antidifferentiating sines and cosines than when differentiating them.
[Mistakes are much less common when antidifferentiating or differentiating exponentials.]

You could also have differentiated U and antidifferentiated dv 4, 6 or any even number of times
and gotten back to a constant multiple of the original integrand.

If you had done so, and completed the algebra in a similar way as shown above,

you would gotten the same answer,

but with a lot more (unnecessary) work.

And remember that doing unnecessary work increases the chances of making mistakes.




The method can be used for antiderivatives of the type
IX P(Inx)" dx where P isa constant and N is a positive integer

with a not-so-slight modification to the process.

1
Consider jx3 (Inx)? dx

First, let’s consider what doesn’t work well.

u @
L

x? (nx”
-3 9

Zx :

3

We cannot put In X into the dv column

because we don’t know its antiderivative right now.
Even if you know the antiderivative of In X,

it is more complicated than In X itself,

which goes against the basic rule of integration by parts,
that each successive integrand should not be more complicated than the previous.

So we are forced to put In X into the U column.

4 Ll
(Inxy x?
+
Anx) — gx;
x 4

This does not look promising,

because we know the next row in the U column will involve the quotient rule,
which again goes against the basic rule of integration of parts,

that each successive integrand should not be more complicated than the previous.

So, perhaps like the previous example,
we need to rewrite the original integrand using what we’ve done so far.

2(In x)

1 3& 3&
x3(Inx)? dx = (Inx)?| =x3 |- Zx3 | dx
[x2nx)? dx = (Inx)*| S |- | y

1 3 2 3 1
2 _> 2 >~
Ix3(lnx) dx = 4x3(lnx) I2x3 In x dx

The new integral is simpler than the original

because the power of the In X has been reduced by 1.
In fact, you might guess that if we repeat the integration by parts a second time,
we can reduce the power of the In X by 1 more, to 0.

We can do that, but if we’re going to do a 2" integration by parts,
shouldn’t there be a way to do it without going into and out of the table method repeatedly ?

There is, and it amounts to rebalancing the U and dv columns
in the middle of the repeated differentiations and antidifferentiations.



DIFFERENTIATE

MULTIPLY BY x

¥ »
(Inxy el 4 product = intesrand from 1% integration by parts
g L ANTIDIFFERENTIATE

+
Anx) ; x* 4 product = integrand from h Integration by parts

x
MULTIPLY BY x~

1

Alnxy ; x* 4 product = integrand from aa Itegration by parts

{sa10e as line above)

The rebalancing of the table allows us to continue differentiating the U column
without introducing a complicated expression into the table.

DIFFERENTIATE

MULTIPLY BY x

DIFFERENTIATE

¥ »

(Inxy el 4 product = intesrand from 1% integration by parts

L L ] ANTIDIFFERENTIATE

@ ; x; 4 product = integrand from h Integration by parts

MULTIPLY BY &~

Alnxy ; x; 4 product = integrand from aa Itegration by parts
{sa10e as line above)

L g L g ANTIDIFFERENTIATE

% % x; 4 product = integrand from 3™ integration by parts

This last product can be integrated without integration by parts,
but we can complete the whole process in the table by rebalancing once more.

DIFFERENTIATE

MULTIPLY BY x

DIFFERENTIATE

MULTIPLY BY x

DIFFERENTIATE

) »
(Inxy x? # product = inteorand from 1% integration by parts
L g L g ANTIDIFFERENTIATE
@ % x; # product = integrand from ™ mtegration by parts
MULTIPLY BY ¥
Aoy % x% 4 product = intesrand fromn il mtecration by parts
{samne as line above)
L L ] ANTIDIFFERENTIATE
2 % x; 4 product = integrand from 3™ integration by parts
" MULTIPLY BY &~
2 % x; 4 product = integrand from 3™ integration by parts
{sa10e a5 line above)
L L ANTIDIFFERENTIATE
0 il :nc;T # product = inteorand from 4® intearation by parts



Now, we have a O inthe U column,

which means we are done with the table,

and can collect the downward diagonal products.

But we must be careful which factors we multiply.

Remember that the red lines above correspond to rewriting the same integral, not to an integration by parts.

So our downward diagonal products must never involve a factor from above a red line with a factor below the red line. ()
That means,

1 4 4 4
Ix3(lnx)2 dx = (Inx)? gx3 - 2(Inx) 3x3 +2 zx3 +C
4 16 64
1 4 4 4
fx3(lnx)2 dx :%x‘*(ln X)? —%x3 Inx+£x3 +C

1 4
jxi(ln x)2 dx = %x3(8(ln x)2-12Inx+9) +C

(%) If you multiply a factor from above a red line with a factor below the red line,
you are not multiplying U by V,
dv
but rather U by —, which has nothing to do with integration by parts.
X
This technique is usually limited to specialized antiderivatives (like the original problem),

and some complex situations in which integration by parts must be combined with another integration technique
such as substitution, trigonometric/hyperbolic substitution, polynomial long division or partial fractions.

An example of such a situation is IX tanh ™ x dx:

4 @
tanh ™ x ¥
+
1 l .
1-x*
MULTIPLY BY 25 MULTIPLY BY - 2
—_— x'
L x -=-1+ 1 -
2 l-x° l-x-
a # product = integrand from 2 integrationb y parts
{same as hne above)
0 —T+tanhtx

Ixtanh‘lxdx:%xztanh‘lx—%(—x+tanh‘lx)+C
=] 1. =] 1 1 =)
Ixtanh xdx==x"tanh™ x+=x—=tanh™ x+C
2 2 2
jxtanh’lxdx: 1x2—l tanh’1x+1x+c

2 2 2

Ixtanh‘l X dx :%((x2 —Itanh ' x+Xx)+C



An example of a much more complex situation is J.Xcoshfl X dx:

® &
cosh ™ x X
+
1 1 2
x -1 4
MULTIPLY By S~ MULTIPLY BY ——
4 -1
% :: x_ 1 4 product = integramd from d mtemationby parts
_ (saIne as ]1}1-9- above)
w=1x -1
o\
+
x =cosht
0 % i -1 - % cosh ™ x

J'xcosh’1 x dx = (cosh™ x)(%xzj - %«/ 21+ %(%x\/xz —1—%coshl xj+C
J‘xcosh1xdx:%xzcoshlx—%x\/x2 —1+%x\/x2 —1—%cosh1x+c
J'xcoshlxdx=[%x2 —%)coshlx—%x\/x2 -1+C

J'xcosh‘l X dx =%((4x2 —1)cosh™ x—xyx?>-1)+C




